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The statement of the problem



Let P ⊆ G be a submonoid of a (countable, discrete) group G .

A
representation

V : P 7−→ B(H)

on Hilbert space H is said to be isometric if V ∗
pVp = I , for all

p ∈ P.

Problem: We seek broad classes of isometric representations of P
for which the generated C∗-algebra (universal object) demonstrates
a nice behavior.

The obvious choice does not work!
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The left regular representation (L) of a submonoid P ⊆ G is given
by

P ∋ p 7−→ Lp ∈ B(ℓ2(P)),

where
Lpδq = δpq.

and {δq}q∈P is the canonical basis of ℓ2(P).
The generated C*-algebra (resp. operator algebra) is denoted by
Tλ(P) (resp. T +

λ (P)).
One way to identify the desired universal object is to isolate
properties of the left regular representation and ask that our
generic representation satisfies them.
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Other representations....

The representation L⊗ L (or L⊗2) is given by

P ∋ p 7−→ Lp ⊗ Lp ∈ B(ℓ2(P × P)),

where
(Lp ⊗ Lp)δq,r = δpq,pr .

and {δq,r}q,r∈P is the canonical basis of ℓ2(P × P).

More generally, L⊗n and L⊗ π, for any isometric representation π
of P.



Other representations....
The representation L⊗ L (or L⊗2) is given by

P ∋ p 7−→ Lp ⊗ Lp ∈ B(ℓ2(P × P)),

where
(Lp ⊗ Lp)δq,r = δpq,pr .

and {δq,r}q,r∈P is the canonical basis of ℓ2(P × P).

More generally, L⊗n and L⊗ π, for any isometric representation π
of P.



Other representations....
The representation L⊗ L (or L⊗2) is given by

P ∋ p 7−→ Lp ⊗ Lp ∈ B(ℓ2(P × P)),

where
(Lp ⊗ Lp)δq,r = δpq,pr .

and {δq,r}q,r∈P is the canonical basis of ℓ2(P × P).

More generally, L⊗n

and L⊗ π, for any isometric representation π
of P.



Other representations....
The representation L⊗ L (or L⊗2) is given by

P ∋ p 7−→ Lp ⊗ Lp ∈ B(ℓ2(P × P)),

where
(Lp ⊗ Lp)δq,r = δpq,pr .

and {δq,r}q,r∈P is the canonical basis of ℓ2(P × P).

More generally, L⊗n and L⊗ π, for any isometric representation π
of P.



The case P = G



In the case where P = G is a group, then there is a very well
developed theory.

The C∗-algebra Tλ(G ) is denoted as C∗
λ(G ) (or C∗

r (G )) and the
universal C∗-algebra as C∗(G )

Theorem
If G is abelian, then C∗

λ(G ) and the universal C∗-algebra as C∗(G )
are canonically isomorphic.

This holds for amenable groups and in that case the theorem is a
characterization.

Theorem (Fell’s absorption principle)

If π is any unitary representation of G then L⊗ π and L⊗ id are
unitary equivalent.
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Li’s universal C∗-algebra



Let P be a semigroup of a group G . For each k ∈ N we consider
the set of words of length 2k in P,

W(P)k := {(p1, p2, . . . , p2k−1, p2k) | pj ∈ P, for j = 1, 2, . . . , 2k}

and we let W(P) := ∪∞
k=0W(P)k , with the understanding

W (P)0 = ∅. (When the context makes it clear what P is, we
simply write W instead of W(P).)

With each word a ∈ Wk we
make the assignment

a = (p1, p2, . . . , p2k−1, p2k) 7−→ ȧ := p−1
1 p2 . . . p

−1
2k−1p2k ∈ G .

A word a ∈ W is said to be neutral if ȧ = e, the neutral element of
G . If V = {Vp}p∈P is an isometric representation of P and
a = (p1, p2, . . . , p2k−1, p2k) ∈ W, then we define

V̇a := V ∗
p1Vp2V

∗
p3 · · ·V

∗
p2k−1

Vp2k .
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If a = (p1, p2, . . . p2k−1, p2k) is a word in W(P), we write

K (a) := P ∩ (p−1
2k p2k−1)P ∩ (p−1

2k p2k−1p
−1
2k−2p2k−3)P ∩ · · · ∩ ( ˙̃a)P,

for the constructible right ideal associated with a.

It is easy to see
that if {δp}p∈P is the canonical orthonormal basis for ℓ2(P), then

K (a) = {p | L̇∗aL̇aδp = δp, p ∈ P}.

We let
J(P) := {K (a) | a ∈ W(P)},

dropping the reference to P and simply writing J, if there is no
source of confusion.
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Definition
Let P be a submonoid of a group G and let J be the collection of
all constructible right ideals of P. Li’s semigroup C∗-algebra of P,
denoted as C∗

s (P), is the universal C∗-algebra generated by a
family of isometries {wp}p∈P such that

(T1) we = 1;

(T2) ẇa = 0, if K (a) = ∅ with ȧ = e;

(T3) ẇa = ẇb if a and b are neutral words with K (a) = K (b).

In particular, any map w : P → B(H) satisfying the relations (T1),
(T2) and (T3) is a representation of P by isometries. Any
representation satisfying the relations (T1), (T2) and (T3) a
Li-covariant representation of P.
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Another approach to a universal object comes through the use of
topological gradings in the sense of Exel.

Definition
Let A be a C*-algebra and G a discrete group. A collection
B = {Bg}g∈G of closed linear subspaces of A is called a grading of
A by G if

1 BgBh ⊆ Bgh

2 B∗
g = Bg−1

3
∑

g∈G Bg is dense in A.

If in addition there is a conditional expectation E : A → Be which
vanishes on Bg for g ̸= e, we say that the pair ({Bg}g∈G ,E ) is a
topological grading of A.
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Given a grading B = {Bg}g∈G , a representation π = {πg}g∈G of B
on H

consist of linear maps

πg : Bg −→ B(H)

that respect the inherit structure of B, i.e.,
• πe : Be −→ B(H) is a faithful ∗-representation
• πg (bg )

∗ = πg−1(b∗g ), for all g ∈ G and bg ∈ Bg

• πg (bg )πh(gh) = πgh(bgbh), for all g , h ∈ G , bg ∈ Bg and
bh ∈ Bh,

With the use of representations, we associate with B two
cross-sectional C∗-algebras: a maximal one C∗(B) and a minimal
one C∗

r (B) for representations generating a topological grading.
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Theorem
Let B = {Bg}g∈G be a topological grading and let π = {πg}g∈G
be a representation of B generating a topological grading with
associated conditional expectation F : C∗(π) → πe(Be). Then
there exists a canonical ∗-epimorphism

λ : C∗(π) −→ C∗
r (B)

satisfying
ker λ = {x ∈ C∗(π) | F (x∗x) = 0}.
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Proposition

Let P be a submonoid of a group G . Then there is a faithful
∗-representation (coaction)

δ : Tλ(P) −→ Tλ(P)⊗ C∗(G ); Lp 7−→ Lp ⊗ up.

Moreover its spectral subspaces satisfy

Tλ(P)g = span{L̇a | a ∈ W, ȧ = g}.

and form a topological grading for Tλ(P).

A similar grading exists for C∗
s (P).
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Recall that a cancellative semigroup P is said to satisfy
independence

if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence.

Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal.

However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),

and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . .

Hence N∗ does not satisfy independence.



Recall that a cancellative semigroup P is said to satisfy
independence if for every X ∈ J and all X1,X2, . . . ,Xn ∈ J ,

X = ∪n
i=1Xi

implies that X = Xi for some i = 1, 2, . . . , n.

Example

Consider the additive semigroup N∗ := N\{1}. We show that N∗
does not satisfy independence. Indeed, consider the constructible
ideals

k + N∗ = LkL
∗
k = {k , k + 2, k + 3, . . . }, k = 2, 3, . . . .

Then
5 + N = (2 + N∗) ∩ (3 + N∗)

is also a constructible ideal. However
5 + N = (5 + N∗) ∪ (6 + N∗),and yet 5 + N ̸= k + N∗, for any
k = 2, 3, . . . . Hence N∗ does not satisfy independence.



Proposition

Let P ⊆ G be a submonoid that does not satisfy independence.
Then the map

Lp 7−→ Lp ⊗ Lp, p ∈ P

does not induce a homomorphism on Tλ(P)e .

Corollary

Let P ⊆ G be a submonoid that does not satisfy independence.
Then C∗({Tλ(P)}g ) is not canonically isomorphic to C∗

s (P).

Question 1: Identify relations for which C∗({Tλ(P)}g ) is the
universal algebra.
Question 2: Identify C∗

r ({C∗
s (P)}g ).

Question 3: How does Fell’s absorption principle manifests for
arbitrary submonoids?
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Answers



Question 1 was answered recently by Laca and Sehnem.

Theorem (Laca and Sehnem 2021)

The C∗-algebra C∗({Tλ(P)}g ) is the universal algebra for the
relations

(T1) we = 1;

(T2) ẇa = 0, if K (a) = ∅ with ȧ = e;

(T3) ẇa = ẇb if a and b are neutral words with K (a) = K (b), and,

(T4)
∏

b∈F (ẇa − ẇb) = 0, if F is a finite set of neutral words with
K (a) = ∪b∈FK (b), for some neutral word a.
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For Question 2 we need the following definition.

Definition
Let P be a semigroup. The enhanced left regular representation of
P is the representation

L̄ : P −→ B
(
⊕∞

n=1ℓ
2(P)⊗n

)
; P ∋ p 7−→ ⊕∞

n=1L
⊗n
p ,

where L = {Lp}p∈P denotes the left regular representation of P.
(For notational simplicity, we will be writing ℓ̄2(P) instead of
⊕∞

n=1ℓ
2(P)⊗n.)

The generated C*-algebra (resp. operator algebra) is denoted by
T̄λ(P) (resp. T̄ +

λ (P)).
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Proposition

Let P be a submonoid of a group G . Then there is a coaction

δ̄ : T̄λ(P) −→ T̄λ(P)⊗ C∗(G ); L̄p 7−→ L̄p ⊗ up.

Moreover the spectral subspaces

T̄λ(P)g = span{ ˙̄La | a ∈ W, ȧ = g}.

form a topological grading for T̄λ(P).
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Theorem (K. 2023)

Let P be a submonoid of a group G . Then,

(i) C∗({T̄λ(P)g}g ) is canonically isomorphic to C∗
s (P), and

(ii) C∗
r ({T̄λ(P)g}g ) is canonically isomorphic to T̄λ(P).

Corollary

Let P be a submonoid of an abelian group G , e.g., N∗. Then Li’s
semigroup C∗-algebra C∗

s (P) is canonically isomorphic with T̄λ(P),
i.e., the C∗-algebra generated by the enhanced left regular
representation.
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Theorem (K. 2023)

Let P be a submonoid of a group G . Consider

(i) C∗
s (P) is nuclear

(ii) T̄λ(P) is nuclear
(iii) the enhanced left regular representation λ̄ : C∗

s (P) → T̄λ(P) is
injective.

We always have (i) ⇐⇒ (ii) =⇒ (iii). If G is exact, then all of
the above conditions are equivalent.
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For Question 3, we have the following

Theorem (Fell’s absorption principle for semigroups, K. 2023)

Let P be a submonoid of a group G . Let L̄ be the enhanced left
regular representation of P and let π be a ∗-representation of
C∗
s (P). Then the map

T̄λ(P) ∋ L̄p 7−→ L̄p ⊗ π(wp), p ∈ P, (1)

extends to an injective representation of T̄λ(P).
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The non-selfadjoint theory



Theorem (K. 2023)

Let P be a submonoid of a group G and let T̄λ(P)+ denote the
non-selfadjoint algebra generated by the enhanced left regular
representations L̄. Then T̄λ(P)+ is completely isometrically
isomorphic to Tλ(P)+ via a map that sends generators to
generators.



Let’s prove something!

Consider the coaction

δ : Tλ(P) −→ Tλ(P)⊗ C∗(G ) : Lp 7−→ Lp ⊗ up

and note that the completely contractive map defined by

Tλ(P)+ ∋ Lp
δ7−−−→ Lp ⊗ up 7−−−−−→ Lp ⊗ (lp|ℓ2(P)) = Lp ⊗ Lp

is multiplicative because ℓ2(P) is invariant by all lp, p ∈ P.
Iterations of the above argument show that the maps

Tλ(P)+ ∋ Lp 7−−−−→ L⊗n
p , n = 3, 4, . . .

are completely contractive and multiplicative. By taking a direct
sum of all these maps, we produce a completely isometric map
from Tλ(P)+ onto T̄λ(P)+, which sends generators to generators.
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Corollary

Let P be a submonoid of a group G . Then there is a completely
isometric comultiplication ∆P on Tλ(P)+ given by
∆P(Lp) = Lp ⊗ Lp, p ∈ P.

Proof.
Let ψ : Tλ(P)+ → T̄λ(P)+ be the isomorphism of the previous
theorem and let

ϕ : T̄λ(P) → T̄λ(P)⊗ T̄λ(P); L̄p 7−→ L̄p ⊗ L̄p, p ∈ P.

Then the map ∆P := (ψ−1 ⊗ ψ−1)ϕψ is the desired
comultiplication.
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Applications



Theorem (K. 2023)

If P is a submonoid of a group G , then the following are equivalent

(i) Tλ(P)+ admits a unimodular character ω, i.e., |ω(Lp)| = 1,
for all p ∈ P.

(ii) P is left reversible, i.e., pP ∩ qP ̸= ∅ for any p, q ∈ P, and it
embeds in an amenable group.

This last result works for semigroups that do not satisfy
independence and therefore allows us to strengthen recent results
of Clouatre and Dor-On.
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A cancellative semigroup P is said to have the finite divisor
property (or FDP)

if each element of P admits finitely many
factorizations.

Corollary

Let P be a submonoid of an amenable group G . Assume that P is
left reversible and has FDP, e.g., N∗. Then C∗

max(Tλ(P)+) is RFD.

Clouatre and Dor-On established the previous result under the
assumption that P satisfies independence. Other results are
included in our paper.
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